
Tom Clune
NASA GSFC (SIVO – 610.3)

  Introduction
 Modules
 Pointers
 User defined types
 Optional arguments (time permitting)

  Intent is to focus on fairly narrow subset
of features introduced in F90

 Emphasis on examples and best
practices

 Please - ask questions as we go along

  ISO mandated schedule:
◦  Major revision every 10 years
◦  Minor revision every 5 years

  FORTRAN 66 – first actual standard
  FORTRAN 77
◦  block if/else/endif, overindexing, generic names for intrinsics, implicit none
◦  Capitalization changed – helps to recognize experts

  Fortran 90 (formerly Fortran 8x)
◦  Array syntax, dynamic memory, modules, user defined types, numerous

intrinsic functions, free format, long identifiers, explicit procedure interfaces,
inline comments, …

  Fortran 95
◦  Very minor/obscure additions

◦  Generally still referred to as “F90” by users/vendors
◦  Universally implemented by vendors at this time.

  F2003
◦  Has been the standard for 7 years!
◦  Important new features
  Standardized interoperability with C
  Object-oriented programming, procedure pointers
  ASSOCIATE construct
◦  Full implementations are only just now becoming

available
  IBM, Cray, NAG
  Partial implementations are common - intel*, gfortran, g95

  F2008 (F2010?) – minor? Probably not.
◦  Co-Array Fortran – parallelism without the pain of

MPI

 Lots of good material on web
 Usenet - comp.lang.fortran lots of spam
 Mailing list – comp-fortran-90
◦  Low volume, little spam
◦  Lots of volunteer experts
◦  Interesting discussions of subtle aspects

 ModelingGuru.nasa.gov forums
◦ Esp. if specific to NASA computing systems

  program units which act as containers for data and procedures
while limiting the visibility to external program units.

  provide explicit interfaces for contained procedures and
subroutines
◦  Provides strong argument checking

  Argument count
  TKR (type : kind : rank) of each argument

  Useful for encapsulation – the hiding of implementation details
◦  Think firewalls for source code

  Simplest case is just a glorified common block
◦  Typical 1st use for developer is to replace commons
◦  Guarantees consistent use
◦  Does not have memory alignment issues/tricks

  MODULE / END MODULE
◦  begin/end declaration of a module

  CONTAINS
◦  Ends declaration of module variables (and derived types)
◦  Begins section of subroutines and functions contained in

module
◦  Use if and only if module has procedures

  PUBLIC, PRIVATE
◦  Attributes that specify which module entities are visible to

external procedures and modules

  USE <module name> [ONLY: <entity>,…]
◦  Allow access to all or specified public entities from module

module <module name>
 <use statements>
 implicit none
 private
 <module variable declarations>
contains
 <procedure 1>
 <procedure 2>
 …
end module <module name>

  By default all module entities have the PUBLIC attribute
◦  I.e. all module entities are accessible by external procedures and

modules.
  Can override with PRIVATE statement
◦  No module entities visible externally
◦  Also can confirm default with PUBLIC statement
◦  But not both

  PUBLIC default is an unfortunate choice
◦  Can easily lead to complications with nested modules
◦  Strongly recommend always override with PRIVATE

  Individual entities can override with attribute
 real, public :: array(10) 
integer :: ifirst  
public :: ifirst

  Vanilla F77 procedure uses implicit interfaces
◦  Compiler cannot properly check arguments for consistency
◦  Permits some interesting tricks by mixing types

  F90 introduces explicit interfaces
◦  Checks for consistent argument count and type/kind/rank
◦  Functions/Subroutines in modules have explicit interfaces

◦  Requires either USE statement or INTERFACE block in the
caller routine
  Not discussing INTERFACE blocks today (rarely needed)

◦  Common compile time error is “cannot find procedure such-
and-such”.
  Indicates missing “use” statement
  Compiler “mangles” names under hood so may be difficult to recognize

  The POINTER attribute allows a variable to be
associated with the memory of another variable.
◦  Think of as sophisticated, dynamic version of F77

EQUIVALENCE
◦  Some restrictions on which variables can be associated.
◦  Caution: Related to, but quite different from C pointers

  Useful for
◦  Dynamic memory allocation
◦  Manipulating sub-arrays
◦  Avoids copies, improves performance (sometimes)
◦  Functions that return arrays instead of scalars
◦  Advanced data structures. E.g. linked-lists

  Declaration
 real, pointer :: x ! Scalar 
 real, pointer :: vec(:) ! 1D array 
 real, pointer :: arr(:,:) ! 2D, etc

or
 real :: x  
pointer :: x

  Usage
 real, target :: y  
… 
x => y ! Pointer assignment 
x = y ! Copy value of y into target of x

  Pointer and target must have same TYPE, KIND, and RANK
  Can give provide initial value (F95)

 real, pointer :: z => null()

◦  SAVE attribute is implicit, as with all other initialized variables
◦  Strongly recommended for global pointers

real, pointer :: ptr
real, target :: A, B

A = 1.
ptr => A
A = 2.
print*, ptr ! Should print “2”
ptr = 3.
print*, A ! Should print “3”

ptr => B
ptr = 7.
print*, A ! Should still print “3.”

  Nullify - restores pointer to pristine state
◦  Caution: does not deallocate memory (other pointers may still

point to the same target)

  Associated – returns .true. iff pointer is associated
with a target or a specific target
◦  Useful to test result of function which sets a pointer
◦  Note that results are undefined for uninitialized pointers!
◦  Usage:

  Any target  
if (associated(ptr)) then

  Specific target (or pointer with same target)  
if (associated(ptr, targ)) then

◦  Do not confuse with allocated intrinsic for allocatables.

  In addition to associating with a target
variable, pointer variables can be allocated
just like ALLOCATABLE variables.
o  Target is implicit and not associated with any actual variable

  Important diffs from allocatable variables:
•  Deallocation nullifies pointer
•  Pointer local vars not automatically deallocated
•  Memory leak potential

•  Pointers can be reallocated without deallocation
•  Pointers can reassigned to other var without deallocation

•  Best practice: use ALLOCATABLE attribute unless
POINTER is required.

integer, pointer :: indices(:)

real, pointer :: ptr(10) ! Not allowed

…

if (.not. Associated(indices)) then

 allocate(indices(100))

end if

indices = …

…

deallocate(indices)

allocate(indices(5:10)) ! Specify different lbound

…

  Pointers can be associated with slices (subsections) of
multidimensional arrays
◦  Mostly straightforward, but there are some subtleties lurking about

  Examples:
real, target :: A(0:100,2:100)
real, pointer :: p1(:,:), p2(:,:),p3(:,:), p4(:,:)
p1 => A ! Whole array
p2 => A(:,:) ! Not whole array
p3 => A(2:4,51:)
p4 => A(::10,50:80:10) ! strided

  What are the lbound, ubound, and shape of p1, p2, p3?
Pointer L Bound U Bound Shape
p1 [0,2] [100,100] [101,99]
p2 [1,1] [101,99] [101,99]
p3 [1,1] [3,50] [3,50]
P4 [1,1] [11,4] [11,4]

  An associated pointer variable can be passed as
an actual argument as though it was a regular
variable
◦  Must be associated
◦  Usual Fortran rules against aliasing apply

real :: tracer1(100,10)
real :: tracer2(100,10)
real, pointer :: a(:,:)
a => tracer1
call sub(a) ! Same as call sub(tracer1)
a => tracer2
call sub(a) ! Same as call sub(tracer2)

 Dummy arguments can also have the
pointer and target attributes

 Pointer dummy:
◦  requires a pointer actual
◦  association status of dummy is that of actual at

entry (can be null)
◦  association status of actual is that of dummy at

exit (can be null)
◦  requires explicit interface
◦  cannot specify “intent”
◦  Ambiguous meaning
◦  Permitted in F2003

  Can be useful to have a function or subroutine return
a dynamically sized array.
◦  POINTER attribute is necessary if array is to be allocated by

the procedure
◦  Potential source of memory leaks – caller responsible for

deallocation
◦  E.g. suppose we wanted to have a function that returns a

dynamically sized array:

function newGridArray() result(array)

 real, pointer :: array(:,:,:)

 allocate(array(IM,JM,LM))

end function newGridArray

…

real, pointer, dimension(:,:,:) :: u, v, w

u => newGridArray()

v => newGridArray()

w => newGridArray()
•  Later we will see how to use derived

types to pass in the grid dimensions

  Provides ability to declare new “types”
◦  Collections of entities of intrinsic types and/or other user-

defined types
◦  Esp. useful for multiple instances of such collections
◦  Introduces higher-level structure: treat many as one
◦  Concept is to group items that are closely associated

  Nearly impossible to underestimate the usefulness
◦  Encapsulation and reuse
◦  Replacing common blocks, short meaningful argument lists
◦  Generic programming
◦  First step on path to object-oriented programming

  Perhaps difficult to appreciate at first
◦  Effective design requires experience

  F90 terminology is different than most languages. E.g.
◦  Define types are called “derived types”
◦  Member entities are referred to as “components”

  Components can have default initial values
  Declare type with TYPE / END TYPE block

  In same part of procedure/module as other variable declarations
 TYPE <type name> 

 <component1> [= <initial value>] 
 <component2> [= <initial value>] 
 … 
END TYPE

  Declare variable of a derived type via
 TYPE (<type>) :: myVar ! Instance of <type>

  Access components with selector “%”:
◦  (Note: in C the selector is “.”)

 x = myVar%foo  

  Suppose Fortran did not provide complex
numbers. We might do something like:

type Complex 
 real :: real = 0. ! not required 
 real :: imag = 0.  
end type Complex 

 function add(z1, z2) result(z3) 
 type (Complex) :: z1, z2, z3 
 z3%real = z1%real + z2%real 
 z3%imag = z1%imag + z2%imag 
end function add

  We can have dynamically sized components, but
must use POINTER instead of ALLOCATABLE
◦  Fixed in F2003

  Computational grids involve a number of highly
related values that should be grouped together.
◦  Reduces duplication when model has multiple grids

type LatLonGrid  
integer :: numLat, numLon, numLev  
real :: dlat, dlon

 real, pointer :: latitudes(:) 
real, pointer :: longitudes(:)

 real, pointer :: pressureLevels(:)  
end type LatLonGrid

type (LatLonGrid) :: atmosGrid  

type (LatLonGrid) :: oceanGrid

 We can now return to the array
allocation example from the pointer
section:
function newGridArray(grid) result(array) 
 type (LatLonGrid) :: grid 
 real, pointer :: array(:,:,:) 
 allocate(array(grid%numLat, grid%numLon, & 
 & grid%numLev)) 
end function newGridArray  
… 
real, pointer, dimension(:,:,:) :: u, v, w  
type (LatLonGrid) :: atmosGrid  
u => newGridArray(atmosGrid) 
v => newGridArray(atmosGrid) 
w => newGridArray(atmosGrid)

 Might want to try:
 real, pointer :: ptrs(:)

◦ Unfortunately this is the syntax for an array
pointer
◦ Ambiguity inherent in F90 notation

  Instead, one can do this:
 type MyPointer  
 real, pointer :: ptr  
end type MyPointer  
type (MyPointer) :: ptrs(:)

 Arises more often than one might think

type Field
 real, pointer :: values(:,:,:) ! 3d
 type (Grid), pointer :: gridReference
 character(len=80) :: longName
 character(len=80) :: shortName
 character(len=80) :: units
end type Field
type Bundle
 type (Field), pointer :: fields(:)
tnd type bundle

•  F90 permits circular type definitions if a pointer is
used to interrupt infinite regress:

type LinkedList

 type (LinkedList), pointer :: next

 type (LinkedList), pointer :: parent

 real :: value

end type Linked List

function getNext(list) result(next)

 type (LinkedList) :: list

 type (LinkedList), pointer :: next

 next => list%next

end function getNext

  When defined inside procedures can only be used in
that procedure
◦  Cannot use “same text” to declare type elsewhere – treated

as different types

  Passing types to procedures requires explicit
interface – trivial for modules

  Type can be declared public/private just like module
variables
◦  Oddity: can have PUBLIC variables of a PRIVATE type

  Type components are default PUBLIC, but can be
declared PRIVATE
◦  Cannot specify per component (fixed F2003)
◦  PRIVATE enables encapsulation

  Choose good meaningful names – make code readable
  Module defines one derived type
◦  One module per file (make it easy to name & find)
◦  Declare derived type PUBLIC
◦  Declare derived type components PRIVATE
◦  Few if any module variables

  possibly some parameters

  Module contains any procedures that need to directly
manipulate type components
◦  Create trivial “accessor” procedures that get/set components
◦  Other modules/procedures work with type at an abstract level
◦  Make 1st argument the derived type argument

  Think of subroutines as methods which act on the type

  Many/most changes to derived type will not require changing
external code - encapsulation

 Why would we want to?
◦ Promote reuse
  Global entities complicate reusing procedure in

other context
  Using procedure arguments does not
◦ But … passing long lists of arguments is

also bad
 Derived types give us means to pass

large collection of data to subroutine
with a modest argument list.

1.  Create a container module
2.  Declare derived type

a)  For each member of common block create a similar type
component

b)  Declare components PUBLIC (for now)

3.  Declare a global variable of new type
4.  Pass variable as argument to routines that use common block

a)  Replace references to common with references to components
b)  For large codes, create 2 routines to copy type to/from common

•  Place in container module
•  Enables gradual transition as opposed to wholesale slaughter

c)  Try to identify suite of “helper” procedures that could contain most
component references – push them out of external procedures

•  If successful – declare components PRIVATE

5.  Delete common block (rinse and repeat)

  Use F90 “overloading” to express functional similarities
◦  Enhances understanding of code
◦  Reduces magnitude of change if a type changes (procedure name does not)

  E.g. checkpoint()
interface checkpoint 
 module procedure checkpoint_grid  
 module procedure checkpoint_field  
end interface 
… 
subroutine checkpoint_grid(this, unit) 
 type (Grid) :: this 
 integer :: unit 
 … 
end subroutine checkpoint_grid  
subroutine checkpoint_field(this, unit) 
 type (Field) :: this 
 integer :: unit 
 … 
end subroutine checkpoint_field

 F90 allows arguments to be passed by
keyword instead of by order
◦ Requires explicit interface
◦ All arguments after first keyword must also

be passed by keyword
 Example

 subroutine print(name, unit) 
… 
end subroutine 
… 
call print(unit=5,name=‘Bob’) 
call print(‘Bob’, unit) ! equivalent

  F90 allows arguments to be optional
◦  No actual argument is required for corresponding optional

dummy.
◦  Declare with OPTIONAL attribute on dummy
◦  Optional args must be after all non-optional args
◦  Best practice: use keyword for actual argument

  Illegal/undefined to reference optional dummy if no
actual was passed
◦  Intrinsic PRESENT(<dummy>) returns .true. if-and-only-if an

actual has been passed
◦  Caution: Fortran does not “short-circuit”

Common mistake:
if (present(x) .and. x > 0) … ! illegal  
if (present(x)) then 
 if (x >0) … 
end if

  Quite often an optional argument is
associated with a default value that should be
used when actual is not PRESENT.
◦  Consistent style can improve legibility
◦  Introduce similarly named local variable
  Provide default value
  Override if actual is present

 Subroutine foo(x, y, flag)
 …

 logical, optional :: flag

 logical :: flag_

 flag_ = .true. ! Default value

 if (present(flag)) flag_ = flag

 …

  Pointers
◦  Use ALLOCATABLE for dynamic allocation except for

  Data structure components
  Procedure args and function return values
◦  Initialize global pointers with NULL()

  Do not use associated() with uninitialized pointers

  Modules
◦  Prefer default PRIVATE

  Data structures
◦  Choose good names
◦  Group entities that are tightly related
◦  Private components, public type
◦  Co-locate structure definition with routines that make heavy

use of components

 Optional arguments
◦ Always check with PRESENT()
◦ Use keyword with optional
◦ Use sparingly
  Generally at most one optional argument
  Prefer overloading in most situations

